This conditional time: probability, discrete distributions.

Next: continuous time: distributions, expectation.

\[y_i = \{ \text{you initially choose door } i \} \]

\[m_j = \{ \text{Monte Hall then opens door } j \} \]

\[c_k = \{ \text{car actually behind door } k \} \]

\[i, j, k = 1, 2, 3 \]

You pick door 1 (Y1) & Monte Hall opens door 2 to reveal a goat.

Plan ahead!
we want to compare \(P(C_1 | M_2, Y_1) \) to

with \(P(C_3 | M_2, Y_1) \).

This is like ELISA:

| ELISA | unknown; location of car | true HIV status
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>data; route showing you a good behind</td>
<td>what ELISA said</td>
<td></td>
</tr>
</tbody>
</table>

we want \(P(\text{unknown} | \text{data}) \) but

problem setup gave us \(P(\text{data} | \text{unknown}) \)

so let's use Bayes's theorem to reverse order of conditioning:

\[
P(C_2 | M_2, Y_1) = \frac{P(C_1)}{P(C_3)} = \left[\begin{array}{c} P(M_2, Y_1 | C_1) \\ P(M_2, Y_1 | C_3) \end{array} \right].
\]

Bayes factor
Now by the rules \(P(c_1) = P(c_3) = \frac{3}{10} \), so the prior odds are \(\frac{P(c_1)}{P(c_3)} = \frac{1}{1} = 1 \) to evaluate probabilities like \(P(m_2, y_1 | c_1) \), let's use the general form of product rule for \(\text{and} \):

\[
\frac{P(m_2, y_1 | c_1)}{P(m_2, y_1 | c_3)} = \frac{P(y_1 | c_1) \cdot P(m_2 | y_1, c_1)}{P(y_1 | c_3) \cdot P(m_2 | y_1, c_3)}
\]

but \(y_1 \) and \(c_j \) are independent so

\[
P(y_1 | c_1) = P(y_1) = \frac{1}{3}
\]

and

\[
P(y_1 | c_3) = P(y_1) = \frac{1}{3}
\]

so

\[
P(c_1 | m_2, y_1) = \frac{P(m_2 | y_1, c_1)}{P(m_2 | y_1, c_3)} = 1
\]

\[
P(c_3 | m_2, y_1) = \frac{P(m_2 | y_1, c_3)}{P(m_2 | y_1, c_3)} = 1
\]
So: after \(m_2 \) (given \(y_1, c_j \)), the posterior odds in favor of car behind door 2:1, so \(P(c_3 | m_2, y_1) = \frac{2}{3} \) you should switch.

Case study: Cromwell's rule

For any \(D \) such that \(P(D) > 0 \) \\
and \\
(a) if \(P(A) = 0 \) then \(P(A | D) = 0 \) \\
(b) if \(P(A) = 1 \) then \(P(A | D) = 1 \)

\[D = \text{data} \quad P(A) = \text{prior information} \quad \sqrt{P(A | D) = \text{posterior info about A}} \]

\[A = \text{unknown} \]
Anything you put prior probability on has to have posterior probability 1 no matter how the dataset comes out; this destroys the possibility of learning from data.

\[P(A \mid D) = \frac{P(A \text{ and } D)}{P(D)} \]

But if \(P(A) = 0 \) \(\phi \)

then \(P(A \text{ and } D) = 0 \) \(\checkmark \)

\[P(A \mid D) = \frac{P(A \text{ and } D)}{P(D)} \]

so \((A \text{ and } D) = D \)

and \(P(D / D) = 1 \)

\[(9.50) \]
Case Study: The Rasmussen Report

WASH-1400, "The Reactor Safety Study"

Problem] Estimate \(P(\text{catastrophic accident at nuclear power plant}) \)

at a moment in history when no such events had ever occurred (nuclear power began in about 1955, ...)

3 Mile Island 1979

Solution] Use expert judgment to break down \(\Theta \) into a collection of simpler events connected together with \(\land, \lor, \ldots \); for example

\(\Theta = (\text{hi, y1 & above # faults start off reactor} \land \ldots) \)
Estimate of \(P(\Theta) \) was extremely small: \(10^{-12} \), yet only 4 years later: 3 miles inland.

What went wrong?

Right calculation:

\[
P(\Theta) = P(\text{tiny} \mid \text{brakes}) \cdot P(\text{brakes}) \]

\[
P(\text{tiny} \mid \text{brakes}) \cdot P(\text{brakes}) \cdot P(\text{brakes} \mid \text{small})
\]

What they did instead: they assumed independence.

\[
P(\Theta) = P(\text{tiny} \mid \text{brakes}) \cdot P(\text{brakes}) \cdot P(\text{brakes} \mid \text{small})
\]

\[
\frac{\text{small}}{\text{small}} \quad \frac{\text{small}}{\text{small}} \quad \frac{\text{small}}{\text{small}}
\]

= tiny just because many monkeys close to a multiplied