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1. [120 total points] (biology) Limnology is the study of inland waters (both saline and fresh),
including their biological, chemical and hydrological properties. One common outcome variable in
studies in this branch of biology is pH, because the acidity of a lake can be an important factor in
determining the abundance of fish and other wildlife living in and near it. According to the web
site www.lenntech.com/aquatic/acids-alkalis.htm,

Unpolluted deposition (or rain), in balance with atmospheric carbon dioxide, has a pH
of 5.6. Almost everywhere in the world the pH of rain is lower than this. The main
pollutants responsible for acid deposition (or acid rain) are sulfur dioxide (SO2) and
nitrogen oxides (NOx). Acid deposition influences mainly the pH of freshwater. ... Most
freshwater lakes, streams, and ponds have a natural pH in the range of 6 to 8. Acid
deposition has many harmful ecological effects when the pH of most aquatic systems
falls below 6 and especially below 5. Here are some effects of increased acidity on aquatic
systems:

• As the pH approaches 5, non-desirable species of plankton and mosses may begin
to invade, and populations of fish such as small-mouth bass disappear.

• Below a pH of 5, fish populations begin to disappear, the bottom is covered with
undecayed material, and mosses may dominate near-shore areas.

• Below a pH of 4.5, the water is essentially devoid of fish.

You’re a limnologist out in the field studying a lake — sufficiently remote that you had to backpack
in to get to it — and this lake looks like it may already have been damaged by acid rain. The
only pH measurement kit you could bring with you in your backpack is rather crude: it’s known
to give unbiased pH measurements that fluctuate around the true value with an SD of 0.15 and an
approximately normal distribution for its measurement errors. You’ll be surveying enough lakes on
this trip that you can’t bring water samples back with you; you need to estimate their pH values
in the field.

You’re wondering if the pH of the lake you’re now standing in front of is below 5; let’s agree to
call any such lake threatened. You decide to take one or more pH measurements to reduce your
uncertainty about the lake’s status.

This problem is about measurement error, so I need to introduce some notation and concepts.
Before you’ve measured anything, let Yi be a random variable capturing the uncertainty in your
prediction of observation i, as i runs from 1 to n. In words, the standard measurement error model
encourages you to additively decompose Yi into the sum of (the true quantity being measured) plus
(systematic error, also known as bias) + (random error):

(observation)i = (truth) + (bias) + (random error)i . (1)
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This model requires an act of imagination to formulate, because the only thing we get to observe
(the number on the left side of the equation) is broken into the sum of three things we can’t observe;
you may therefore wonder at its usefulness, but (as we’ll see) it’s actually quite helpful.

Let θ stand for the true value of the thing being measured (in this problem, θ is the true pH of the
lake); let b stand for the bias in the measurement process; and let the ei be the random measurement
errors. Then symbolically equation (1) looks like

Y1 = θ + b+ e1
...

...
...

...

Yn = θ + b+ en . (2)

In the standard measurement error model, the ei are regarded as IID random variables (this assump-
tion is only reasonable if (i) the measurements are performed in a logically independent manner
and (ii) you try hard to ensure that each observation is performed in precisely the same way) with
mean 0 (any mean other than 0 gets absorbed into the bias term) and standard deviation σ. Define
Ȳn = 1

n

∑n
i=1 Yi and ēn = 1

n

∑n
i=1 ei.

(a) Show that Ȳn = θ + b + ēn; show that V (ēn) = σ2

n
; and therefore show that E

(
Ȳn
)

= θ + b

and V
(
Ȳn
)

= σ2

n
. Intuitively, why is the variance of ēn n times smaller than the variance

of any of the ei going into ēn? Show that your results in this part of the problem imply
that Ȳn only converges in probability to the truth θ if b = 0. Show that the typical amount

RMSE
(
Ȳn
)

=

√
E
[(
Ȳn − θ

)2]
by which Ȳn is likely to differ from θ (RMSE stands for root

mean squared error) is given by the Pythagorean expression

RMSE
(
Ȳn
)

=

√
b2 +

σ2

n
, (3)

and that therefore this also only goes to 0 as more data accumulates if b = 0. [70 points]

Suppose for the rest of this problem that the true pH of this lake is 5.1, so that in fact it’s not
actually threatened.

(b) If you take only a single water sample and process it with your pH kit, what’s the probability
that you’ll incorrectly conclude that this lake is threatened? Show your work. [10 points]

(c) You’re not happy with the misclassification probability in (b), and you decide to remedy this
by taking n > 1 independent water samples from the lake and basing your assessment on
their mean pH value Ȳn. How large does n need to be to make the probability of {incorrectly
concluding that this lake is threatened} 0.5% (in other words, a probability of 0.005, expressed
as a decimal number) or less? Be explicit about all aspects of your probability model, including
all of the assumptions you make and whether you think they’re reasonable. [40 points]

2. [140 total points] (medicine) Hypertension is a medical condition in which the blood pressure is
chronically elevated. Persistent hypertension is one of the risk factors for strokes, heart attacks,
heart failure and arterial aneurysm, and is a leading cause of chronic renal failure; as of 1999, it
was estimated that 29% of American adults were hypertensive, and a U.S. public health goal in
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Subject 1 2 3 4 5 6 7 8 9 10 11 12 Mean SD

Before 200 174 198 170 179 182 193 209 185 155 169 210 185.3 17.1
After 191 170 177 167 159 151 176 183 159 145 146 177 166.8 14.9

Difference +9 +4 +21 +3 +20 +31 +17 +26 +26 +10 +23 +33 18.6 10.1

Table 1: Before and after results for n = 12 hypertensive patients treated with Captopril.

2000 was to lower this rate to 16% by 2010 (this goal has not yet been met: the current percentage
is still about 28%). Diet and exercise can go a long way to lower blood pressure, but drugs are
also sometimes needed (particularly given how hard it is to get Americans to exercise and eat in a
healthier way :-) .

The online reference Wikipedia notes that “Captopril is an angiotensin-converting enzyme (ACE)
inhibitor used for the treatment of hypertension and some types of congestive heart failure. Cap-
topril was the first ACE inhibitor developed and was considered a breakthrough both because of
its novel mechanism of action and also because of the revolutionary development process. ... The
development of Captopril was among the earliest successes of the revolutionary concept of structure-
based drug design. The renin-angiotensin-aldosterone system (a hormone system that helps regulate
long-term blood pressure and blood volume in the body) had been extensively studied in the mid-
20th century, and it had been decided that this system presented several opportune targets in the
development of novel treatments for hypertension.”

Captopril was developed in the mid 1970s; MacGregor et al. (1979, British Medical Journal) pub-
lished the results of a clinical trial on its effects. Systolic blood pressures (in mmHg) were measured
for n = 12 representatively-chosen hypertensive patients, before and after taking Captopril for a
long enough time period for the drug to work. Before any data had been gathered, let (Bi, Ai) be a
pair of random variables signifying the before and after blood pressure readings for person i in the
study (as i runs from 1 to n), and define Di = (Bi − Ai) and D̄n = 1

n

∑n
i=1Di; the realized values

of these random variables are given in Table 1.

(a) Estimate the average effect ∆ of Captopril in the population to which you believe it’s ap-
propriate to generalize here, and explicitly identify that population. Is this estimated effect
large in clinical terms? Attach a standard error to your estimated effect, and construct a
95% confidence interval for ∆, explicitly identifying all assumptions you’re making. Is the
estimated effect statistically significant? What do you conclude about Captopril’s usefulness
in treating hypertension? Explain briefly. [80 points]

(b) Figure 1 presents the scatterplot matrix for the before and after systolic blood pressure read-
ings on these patients and the differences, with pairwise correlations noted.

(i) The experimental setup used by the investigators in this problem is called a repeated-
measures design leading to a paired comparison, because blood pressure was measured
twice on the same n people and the analysis focused on the differences (before – after).
Another way the experiment could have been run — this is called a completely randomized
design — would be to (I) choose 2n hypertensive people in a representative manner and
(II) randomize n of them to receive nothing (the control group) and the other n to receive
Captopril (the treatment group). The realized (Bi, Ai) values in Table 1 can be used
to make a good guess at what the data set would have looked like if the investigators
had used a completely randomized design instead of their paired comparison: the only
difference would be that the Bi and Ai values in Table 1 would have been independent,
because the data values in column i of the table would have come from two different
people.
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Figure 1: Scatterplot matrix for the variables before, after, and diff.

The estimate of the treatment effect with the completely randomized design would have
been ∆̂ = B̄n − Ān, where B̄n = 1

n

∑n
i=1Bi and Ān = 1

n

∑n
i=1Ai, but notice that this

is the same as D̄n = 1
n

∑n
i=1(Bi − Ai) =

(
1
n

∑n
i=1Bi

)
−
(
1
n

∑n
i=1Ai

)
. Let VRM and

VCR denote the variance of D̄n under the repeated-measures and completely-randomized
designs, respectively; also let σ2

B and σ2
A denote the population variances of Bi and Ai,

respectively, and define ρ , ρ(Bi, Ai). Show that

VRM
(
D̄n

)
=
σ2
A + σ2

B − 2 ρ σA σB
n

and VCR
(
D̄n

)
=
σ2
A + σ2

B

n
, (4)

and that therefore the efficiency of the RM design when compared with CR is given by

e(RM,CR) ,
VCR

(
D̄n

)
VRM

(
D̄n

) =
σ2
A + σ2

B

σ2
A + σ2

B − 2 ρ σA σB
. (5)

Show, using the data values in Table 1 and the correlations in Figure 3, that in this
experiment RM was 5.0 times more efficient than CR (and that doesn’t even reflect the
fact that CR used 2n patients instead of the n patients in RM). [40 points]

(ii) Does the effect of the drug seem to be constant across the 12 patients, or is there a
tendency for the drug to have a larger or smaller effect for people whose initial blood
pressure was high than for those whose initial reading was lower? Which (if any) of the
correlations in Figure 1 supports this conclusion? Explain briefly. [20 points]

3. [130 total points] (binomial and negative binomial sampling) You and I are both getting ready
to sample from a Bernoulli process with unknown success probability 0 < θ < 1. You decide to use
binomial sampling : you propose to
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(1) set a fixed known number n ≥ 1 of Bernoulli trials in advance,

(2) observe that many trials, and

(3) record the random number S of successes you see.

I instead propose to use negative binomial sampling : I’ll watch the same process that you do, but
I’ll

(1′) set a fixed known number s ≥ 1 of successes in advance and

(2′) observe the Bernoulli trials until I’ve seen s successes,

(3′) recording the random number N of trials that were needed to get that many successes.

Question, to be answered by parts (a–c) of this problem below: if your S equals my s and my N
equals your n, should you and I draw essentially the same conclusions about θ?

(a) Briefly explain why your probability model for S should be Binomial(n, θ), so that your S has
PF

fS(s |n, θ) =

(
n
s

)
θs(1− θ)n−s I{0,1,...,n}(s) , (6)

and why a natural estimator of θ for you to use is therefore θ̂B = S
n

. Show that E
(
θ̂B

)
= θ, so

that θ̂B is unbiased; show further that SE
(
θ̂B

)
,

√
V
(
θ̂B

)
=
√

θ(1−θ)
n

; and briefly explain

under what conditions the distribution of θ̂B should be approximately normal. [50 points]

(b) Recall that if X records the number of failures before the sth success, then X ∼ Negative
Binomial(s, θ), with PF

fX(x |x, θ) =

(
s+ x− 1

x

)
θs(1− θ)x I{0,1,... }(x) . (7)

Briefly explain why the random N I’ll observe with my sampling method is related to X via
the simple expression N = X + s. Use the change-of-variables formula to show that the PF
of N is

fN(n | s, θ) =

(
n− 1
s− 1

)
θs(1− θ)n−s I{s,s+1,... }(n) (8)

(Hint: use Theorem 1.8.3 of DS (page 34): for all integers n ≥ 1 and all integers k = 0, 1, . . . , n,(
n
k

)
=

(
n

n− k

)
). Notice how similar equations (6) and (8) are; this encourages the idea

that you and I will get more or less the same answers about θ if I use the estimator θ̂NB = s
N

.

Use the Delta Method to show that E
(
θ̂NB

)
.
= θ, so that θ̂NB is approximately unbiased,

and that SE
(
θ̂NB

)
,

√
V
(
θ̂NB

)
.
=
√

θ(1−θ)
E(N)

. Use Jensen’s Inequality to show that — in a

refinement to the Delta Method — E
(
θ̂NB

)
> θ, so that θ̂NB is actually biased on the high

side. It can be shown (you’re not asked to show this) that E
(
s−1
N−1

)
= θ (call this fact (∗));

for a fixed observed value n of N , use (∗) to show that the bias of θ̂NB goes to 0 like 1
n
, so

that — for large N — θ̂NB is indeed approximately unbiased. [70 points]

5



(c) Looking at the expressions for the means and standard errors (SEs) of θ̂B and θ̂NB, is it true
that you and I will come to pretty much the same conclusions about θ with our different but
related sampling methods? Explain briefly. [10 points]

4. [120 total points] (public health) In one of the largest and most famous human experiments ever
conducted, in 1954 a randomized controlled trial was run to see whether a vaccine developed by a
doctor named Jonas Salk was effective in preventing paralytic polio. A total of 401,974 children,
chosen to be representative of those who might be susceptible to the disease, were randomized to
two groups: 200,745 children (the control group C) were injected with a harmless saline solution
and the other 201,229 children (the treatment group T ) were injected with Salk’s vaccine.

(a) What was the point of giving saline solution to the children who didn’t get the vaccine?
Explain briefly. [10 points]

(b) Would it have been possible to run this experiment in a double-blinded fashion? Would it
have been a good idea to do so? Explain briefly. [10 points]

(c) The results of the trial were as follows: 33 of the 201,229 children who got the vaccine later
developed paralytic polio, whereas 115 of the 200,745 saline children suffered this fate. Let
θ̂T = 33

201229

.
= 0.0001640 and θ̂C = 115

200745

.
= 0.0005729 be the observed polio incidences in

the T and C groups, respectively. Does the difference between these rates seem large to
you in practical terms? Build a probability model for this situation, being explicit about
all assumptions you make and why they’re reasonable, and use your model to construct a
99.9% confidence interval for the population mean difference in rates of polio between the two

groups. Sketch your confidence interval with
(
θ̂C − θ̂T

)
as the center, locating the left and

right endpoints, the center and the reference point of 0. Is the observed difference statistically
significant at the 99.9% confidence level? What do you conclude about the effectiveness of
the Salk vaccine? Explain briefly. [70 points]

(d) Your confidence interval sketch in (c) should have revealed that there was quite a bit of distance
between the left endpoint and 0, which means that — in retrospect, after the experiment had
finished — the designers of the trial had chosen T and C sample sizes that were quite a bit
bigger than necessary. In the rest of this problem, let’s roll the clock back to the period in
which the trial was designed, and reconsider the sample size issue.

Let n = (nC + nT ) be the total sample size planned for the experiment, and for simplicity
suppose that exactly n

2
children are randomized to each of the T and C groups. If the polio

incidences turned out to precisely match the rates in the actual trial, what value of n would
have been necessary to make the left edge of the 99.9% confidence interval be just barely
positive? Show your work. (This method is one way to perform sample size determination
at design time.) Do you think the designers of the Salk trial were stupid, or is there some
other explanation for their retrospectively-unnecessarily-large sample sizes? Explain briefly.
[30 points]
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