Case Study

When I lived in Los Angeles in the early 1990s I sometimes

had to drive to Phoenix (AZ), a distance of about D = 400

miles along Interstate 10, on which the speed limit was 70
miles per hour (mph).

The faster I drove, the faster I got to Phoenix (good), but
the greater the chance I got a speeding ticket (bad).

Evidently I needed to choose a compromise driving speed
(not too slow, not too fast) — what’s the
best possible compromise?

This is an example of a problem involving decision theory: I

have to choose an action (here, this corresponds to picking

a speed at which to drive) in the face of uncertainty (here,
I don't know whether or not I'll get a ticket).

We talked about another decision-theory example on the
first day of class: should a law regulating the dumping of
refuse from ships into Monterey Bay be enacted or not,

and if it's enacted will this have a positive or negative
effect on {the environment, the economy}?

There's an established branch of statistics (and
economics) devoted to studying how people can make
optimal choices under uncertainty: decision theory.

One way to lay out the principles of this subject involves
thinking about four ingredients:

e A set A of available actions, one of which you will choose;

e For each action a, a set £ of uncertain outcoimes
describing what will happen if You choose action a;

e A set C of real-world consequences corresponding to the
outcomes &; and

e A utility function U that quantifies your preferences for
the consequences C, with values of U living on the number
line and (without loss of generality) with large values of U

to be preferred. .
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Setting Up the Problem

Let's pretend that I drive at a constant rate r and that I
can achieve all possible speeds continuously between 70
and 90 mph.

Then A in this problem just consists of possible rates r of
driving speed in the interval [r,,, rn] = [70,90], and £ consists
of pairs [t = £, S(r)], where t is the travel time and

S(r) = 1 if I get a ticket going at rate r and O if not.

S(r) is like a random draw from a 0—1 population with p(r)
as the chance of getting a 1 (a speeding ticket) and
[t — p(r)] as the chance of getting a 0 (no ticket).

Suppose that observational experience has shown me that

* the probability p(r) of getting a ticket during the journey

rises — roughly linearly — from 0 at r,, = 70 mph to around
pri = 0.55 at rp; = 90 mph.

The hard part of applying decision theory turns out to be
that all of the utility values have to be on the same
scale, so that you can weigh the costs against the
benefits of the various possible actions.

Let’s say that speeding tickets cost T'= $150, and — if I
get one — my vearly car insurance premium will go up by
I = $75.

Those are the costs of going too fast, so I also have to try
to express the benefits of getting to my destination
faster in monetary terms.

To quantify the advantage to me gained by decreasing the
travel time, I discover after some thought that I would be
willing to pay roughly F = $100 per hour of reduction in
driving time (I don't like long interstate drives).
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Maximizing Expected Utility

As noted above, the utility function here has two parts:
the gain from going faster, and the possible loss from
getting a ticket.

At the slowest rate I'm contemplating it will take me

% = 5.7 hours; at the fastest rate I'm considering the

journey will take 22 = 4.4 hours; and in between the
effective “monetary’” gain to me will be

r(2 D) =500 (20 90)

Tio T r

The monetary loss from the ticket would be
$(T 4 1S(r) = $225 S(r), so the whole utility function is

UGr) = $F (9_ . 9) _$(T 4+ DS(r)
Tlo T
= $100 (47000 - 4(:()) — $225 5(r). (2)

Since big utility values are better than small ones, it
seems like I should just find the value of r that maximizes
utility, but I can’'t do that, because S(r) is random: I either
get a ticket or I don’t, and before I start driving I don’'t
know which.

People have shown in this situation that the best you can
do is to

Maximize the expected value of the utility function
(or just maximize expected utility for short).

Here the only part of equation (2) that’s random is S(r),
which is either 1 with probability p(r) or O with probability
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Maximizing Expected Utility

Computing the expected value of S(r) is like working out
the mean of a population with 100p(r)% 1s and
100[1 — p(r)]% Os:

E[S(r)]=p() -1+ [1—=p(r)]-0=p(r). (3)
So the expected utility to be maximized is

BlUG)] = $F (2 _ 9) _ $(T + Dp(r)

Tlo r
400 400
70 T

= $100 ( ) — $225p(r). (4)

Now p(r) is supposed to be linear, with the value O at
r =1, = 70 and the value py; = 0.55 at r = rp; = 90: this is
just the straight line eguation

p(r) = ;m?fli—(r — ) = 0.0275(r — 70). (5)
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So finally we want to find the value r* of » that maximizes

/D D z-
E[U(T’)] — $F (;——?) —$(T+I)ﬁ(r—rlo)
— $100 (47000 _ 420) _ $6.1875(r — 70).  (6)

This can be accomplished either

(a) by plotting E[U(r)] against r and reading off the
graph the value r* that makes E[U(r)] the biggest, or
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(b) by calculus.




Expected Utility E[U (1) ]

T T — T T
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Driving speed (1)

You can see that an » of about 80 mph is best with this
problem formulation; in fact (math interlude), the optimal
r* is 80.4 mph — from the graph the global maximum of

this function occurs at the only place where the first
derivative is O:

0 FD (T 1I)pn
~EBlU(r)] = —5 - , (7)
8?" r Thi — Tlo
which when set to 0 vields the soiution
FD . 1Tlo
T‘* — (Th (i} ) (8)
' pri (T + 1) |

With the constants as given in the setup here the optimal
speed is 80.4 mph, and at that speed my chance of a

ticket is about 29%. —
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S}ensmwty Analysis

Expected Utilty E[ U { )}
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Driving speed (1}

Notice, however, that the biggest possibie value U* of
E[U ()] is about $9.60, and if I wanted to have a 0%
chance of getting a speeding ticket (by driving at »r = 70
mph) the expected utility value from driving the speed limit
is $0; in other words, I'm only avoiding the loss of about
$10 worth of time while running a substantial risk of
getting a ticket; in other words, this conclusion is
rather fragile.

Another way to see this is to do a sensitivity analysis,
varying some of the constants in the setup (which were only
guesses, after all) to see how stable or non-stable the

conclusion is. |

For example:

e If I'm wrong about F and the right value is 10% larger
than specified above, how much does r* change?

e If my estimate of p;; is too low by 20%, how much would

that affect »*7
39




Sensitivity Analysis (continued)

The optimal »* obtained above was

. FD(rp — 110)
T == .
\/ pri (T'+ 1)

Because of the square root, increasing £ by 10% would
increase r* by about 5%, and increasing py; by 20% would
decrease r* by about 10%.

For instance, with the constants as given except that F goes
from $100 to $110, »* would rise from 80.4 mph to 84.3
mph, and with the constants as given except that py; goes
from 0.55 to 0.66, r* would drop from 80.4 mph to 73.4

mph — you can see that the conclusion is fairly non-stable.

Another question that should always be asked is: How
would you modify the basic problem formulation — what
would you add to (or take away from) it — to make it
more realistic?

Here are some ideas in this problem:

e | he most important missing ingredient is that my chance
of getting in an accident would also rise with », and this
would increase the cost of going faster.

e Speeding tickets are typically graduated in fee: 0—10 mph
over the limit costs 7y, 10—20 mph over costs 15, ...

e You should add (say) 20 minutes to the journey time to
process the speeding ticket, which would act like a
further penalty.

e T he relationship between speed and ticket probability is
almost certainly not linear; a bowl-shaped-up parabola
having the value 0 at 70 mph would probably be more like it.

e I can't really drive at a perfectly constant rate, and
therefore the time it takes me iIs also random.




Other Examples

e Personally, on further reflection I'm not happy at having to
suffer almost a 30% chance of getting a ticket at the
optimal speed, so that means that I've over-valued the

time I'll save by going faster; and so on.

Here are two other decision-theory examples, both from
the health sciences:

e How often should women get mammaograms?

The more often the better for finding breast cancer
(benefit), but mammograms are not free, and there are
risks of false positives (costs).

Evidently the older a woman is, the more often she should
be screened; is there an optimal age to start getting
mammograms?

People have used decision theory to arrive at the current
recommendations: once a year starting at age 45—50,
unless you have a family history of breast cancer (in which
case you should start earlier) or you have one of the BRCA
genes (maybe more often than once a year
would be best).

e One way to measure the quality of health care in a
hospital is to compare the observed mortality of its
patients with the mortality you would have expected given
how sick the hospital's patients are when they're admitted
to the hospital.

This requires a method for measuring patient sickness at
admission.

Typically there will be on the order of 100 variables in each
patient’s medical record that are relevant to admission
sickness.

The more variables the better for making good
predictions of who will live and who will die (benefit), but
variables differ in how much they cost to collect data on —

what's the optimal subset of sickness variables?

C3v> =




Other Examples (continued)

With colleagues I've thought carefully about this problem:

— Keeler E, Kahn K, Draper D, Rogers W, Sherwood M, Rubenstein L,
Reinisch E, Kosecoff J, Brook R (1990). Changes in sickness at
admission following the introduction of the Prospective Payment System.
Journal of the American Medical Association, 264, 1962—1968 (with
editorial comment, 1995—-1997).

— Fouskakis D, Draper D (2008). Comparing stochastic optimization
methods for variable selection in binary outcome prediction, with
application to health policy. Journal of the American Statistical

Association, forthcoming.

— Fouskakis D, Ntzoufras I, Draper D (2009). Bayesian variable
selection using cost-adjusted BIC, with application to cost-effective
measurement of quality of health care. Annals of
Applied Statistics, forthcoming.

- Fouskakis D, Ntzoufras I, Draper D (2009). Population-based
reversible jump MCMC for Bayesian variable selection and evaluation
under cost constraints. Journal of the Royal Statistical Society,
Series C, forthcoming.

-~ We've used decision theory to show people how to choose
subsets of sickness variables that achieve good cost-benefit
trade-offs.

e A good book on decision theory
in the health sciences is

Parmigiani G (2002'). Modeling in Medical Decision Making:
A Bayesian Approach. New York: Wiley.

e One last idea: experimental design and sample survey
design are really decision problems — what's the optimal
(cost-benefit-tradeoff) data-gathering strategy, when
you're uncertain about how the data will come out?



